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Abstract. This article studies the feasibility of a magnetic
induction (MI) based system to measure the concentration of
paramagnetic material in biological tissues. Our final objective
is the measurement of hepatic iron overload with a non-
invasive method. We have used an analytical expression, for a
disc of conducting paramagnetic or diamagnetic material, to
estimate the response of the system. Experimental data were
acquired with a custom measurement system using an
excitation coil and a planar gradiometer as receiver. The
output of the system for different concentration of FeCl3

solutions has been used to calibrate the system. Ten in-vitro
measurements of liver samples, with a volume around 50 cm3,
have been made. Measurements were compared against a
biochemical iron estimation procedure and histological studies
with hematoxilin-eosin and Perls’ Prussian blue staining. A
significant agreement is observed (R=0.92, P<0.001) between
biochemical and MI results. The systems and procedures used
have to be adapted now for in-vivo non-invasive
measurements.
Keywords: Magnetic induction, hemochromatosis, hepatic
iron

I. INTRODUCTION

The possibility to apply magnetic induction (MI)
methods for the measurement of the electrical conductivity
in poorly conducting samples (σ ≤ 2 S/m) was demonstrated
theoretically with analytical model [1] and experimentally
by [2]. Furthermore an imaging system based on MI has
been used to detect ferromagnetic particles in non-
conductive materials at frequencies up to 500 kHz [3]. The
possibility to apply MI techniques to characterize
paramagnetic and diamagnetic materials has been proved
theoretical and experimentally in [4].

An interesting biomedical application based on the
characterization of magnetic properties of biological tissue
is the quantification of iron overload in humans, especially
in hepatic tissue. The measurement of hepatic iron overload
is of particular interest in cases of hereditary
hemochromatosis or in patients subject to periodic blood
transfusion. In-vivo induction methods have been tried
previously in animals [5] and a study of the magnetic
parameters of hepatic iron stores in humans has been
reported in [6], which established the value of iron
concentration and magnetic susceptibility for normal human
hepatic tissue. To our knowledge, only  non-invasive

measurement methods based on SQUID have been tested in
humans [7], [8].  In these methods, a magnetometer system
with a cryogenic region and a special screening room is
required.

For in-vitro measurement histological studies with
hematoxilin-eosin  and Perls’ Prussian blue and biochemical
measurement are used [9]. Nuclear Magnetic Resonance has
been used too for an in-vivo estimation of hepatic iron
overload [10].

In this article we demonstrate the feasibility of in vitro
measurement of normal (physiological) or pathological
hepatic iron concentration (is possible) with our recently
developed MI-system.

A theoretical model for the simulation of a cylindrical
sample in the object space inside a previously developed
coil-coil system is used to confirm the experimental
measurement results. Additionally, a brief description of the
instrumentation used is given.

II. MATERIALS AND METHODS

II.1 Mathematical model

Consider two coils positioned coaxially  (Fig. 1.a) and
spaced by a distance 2a. A sinusoidal current, of angular
frequency ω, in the excitation coil produces a magnetic field
B0 that is measured at the receiver coil. Both coils are
supposed to have a small radius with respect to their
distance and are thus modeled as magnetic dipoles. Suppose
a circular disc of radius R, thickness t (t<<2a), conductivity
κ = σ + j ε0 εr, and relative permeability µr, placed coaxially
and centrally between the coils. The magnetic field B0 will
induce eddy currents and magnetization in the disc. Eddy
currents produce a perturbation ∆Be of B0 [1]. Moreover, a
magnetic field Bd is created in the plane of the disc that
magnetizes it, causing an additional perturbation ∆Bm in the
sensing coil. The total relative perturbation due to this
magnetization, in the sensing coil (only z component) is [4]

(∆Bm/ B0) = [a3 t R2 ( 8 a2 – R2 ) ( µr – 1 ) ] / [ 2 µr ( a
2 + R2 )4 ] (1)

Above 60 K and low frequency, the complex part of the
magnetic susceptibility is essentially zero for paramagnetic
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material [11]. Therefore, the complex behavior of µr is not
considered for biological tissues at normal temperatures.
The perturbation produced by a paramagnetic or
diamagnetic conductor is only reflected in the real part of
the total perturbation ∆Bt = ∆Be + ∆Bm. If we define SCR =
∆Bt/B0, Im(SCR) will essentially contain information about
σ (conductivity) and Re(SCR) about the relative magnetic
permeability and electrical permittivity. In diamagnetic or
paramagnetic materials Re(SCR) is in the order of ∼ −10-6

for H2O (diamagnetic) or ∼ +10-6 for 0,03 M ferric chloride
solution (paramagnetic).
 By definition µr = 1+χ and χ = µ0Nm2/3KT (weak
magnetism), where µ0 is the permeability of the free space,
N the number of magnetic dipoles per unit of volume, m the
magnetic moment of each dipole, K the Boltzman constant
and T the absolute temperature. Therefore Re(SCR) contains
information about the relative magnetic permeability µr (or
the susceptibility χ) and allows an estimation of
concentration of magnetic dipoles.
From the practical point of view it is important to take into
account all systematic measurement errors which affect
Re(SCR) much more than Im(SCR), as in [12].

II.2. Instrumentation system

The experimental system (electronic circuits and algorithms)
described in [12] has been used after adapting the data
acquisition system and the excitation circuit so as to achieve
maximum sensitivity. We have incorporated a board for
digital coherent demodulation developed previously for
electrical impedance tomography systems [13]. With this
board speed was increased to 100 measurements per second.
Moreover, we incorporated a new current source capable of
applying 30 App to the excitation coil. The maximum current
in the excitation circuit is achieved working in serial
resonance mode. The detection coil is a planar gradiometer

(Fig. 1.a). The excitation coil and the PGRAD have a
screening connected to ground. The preamplifier is located
in the zone of low sensibility of the PGRAD, very close to
it. The differential current output of the preamplifier allows
signal transmission to the mainframe with high immunity to
interferences.
The excitation coil and the receiver (PGRAD) were
separated 17 cm, both being attached to a mechanical
support made of PVC. A chopper technique was used to
reduce the influence of electronic drift. The sample was
moved in a plane parallel to the PGRAD, 20 times between
the positive and the negative zone of maximum sensitivity
of the gradiometer [14]. One hundred measurements were
taken each time at each position. The real and imaginary
parts of ∆Bt/B0 were measured. We used a program
developed with LabVIEW (National Instruments) for
automatization of the measurements and the necessary data
processing, for drift correction. All samples were enclosed
in plastic beakers of R = 1,75 cm and h = 6,50 cm.
Calibration was performed measuring 5 samples of FeCl3

solutions. The concentrations were: 0.3, 0.1, 0.05, 0.01 and
0.002 M and the size of the sample was R=1,75 cm and
t=5,00 cm.

II.3. Measurement protocol

We used samples of liver human cadavers coming of
necropsies studies which were carried out in the
Pathological Anatomic Service of the Sant Pau Hospital,
Barcelona, Spain. In all cases written authorization by the
family was obtained.
For MI measurements samples (between 27-68 g) were
obtained less than 12 hours after death. At the same time,
three small samples (few tens of mg) were taken from each
liver piece and frozen for posterior biochemical analysis
[15] and scoring of stainable liver iron-judged by histologic
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Fig. 1. (a) Geometry of the system. Excitation coil (exc) and Planar gradiometer.
(b) Paramagnetic disc inside a coaxial coil system, sen = sensor coil.



grading with Perls’ Prussian blue [9]. The output of the
latter technique is a number between 1-4, with 1 meaning
poor and 4 meaning strong iron content. The remainder of
the sample were enclosed in a plastic beaker (R=1,75 cm
and h=6,50 cm.). The weight of each sample was measured
before the MI measurements at room temperature less than
four hours after collecting the samples for the biochemical
analysis. To detect possible malfunctions, measurements
with distillate water and FeCl3 (0.3 M) were made before
and after the measurement of each liver sample.

II.4. Estimation of the iron concentration

The Re(SCR) depends on the iron concentration, mass,
geometry and location of the sample in the sensibility zone.
For this reason the sample was centered carefully. Mi and
Mref are the masses of the sample and the reference,
respectively,  Mref being 55 g. We used distilled water as
reference for zero iron concentration CFe. Re(SCR) was
corrected for mass differences between different samples by
the factor Mref/Mi. Moreover, a factor depending of the
sample volume was applied.
We obtained a calibration curve from measurements of H2O
(CFe=0) and normal liver (χmH2O= −10*10-6 and χmliver =
−8,42*10-6 [SI]) assuming a CFe=0,25 mg/g for  liver [6] The
linear response of the system to changes of χm was tested for
a group of FeCl3 solutions [4]. The measured Re(SCR) was
for H2O–1,36*10-6, for a liver sample with normal iron
concentration we estimated that Re(SCR)= −1,22*10-6 .
The CFe was calculated from the measured Re(SCR) in mg/g
of liver, assuming that 70% of liver tissue consists of H2O
and 30% of solids [6]. With this model and atomic mass of
Fe additionally the CFe was calculated in µmol/g of dry liver
tissue.

III. RESULTS

The results with all methods are shown in table 1. The
correlation between iron concentration by MI and
biochemical methods is shown in Fig. 2. The STD of
Re(SCR) was in the order of 10-7.

TABLE I.
Iron concentration using different methods.

Sam
ple
No

Mass
(gr)

Re(SCR)

x 10-6

CFe

(µmol
/g
liver
dry)
MI

CFe

(µmol/g
liver
dry)
biochem

P
E
R
L
S

Histological study

M09 30,0 −1,30 4,3 16 1 Moderate-severe
Esteatosis

M11 50,9 −1,29 6,9 12 1 Sligth Esteatosis
M12 47,5 +0,10 100,7 471 4 Cirrhosis. Iron in

hepatocytes  and
macrophags

M13 43,0 −0,70 45,5 188 2-3 Macrophags iron
and hepatocytes

M14 27,8 −0,98 26,1 11 1 Massive metastasis.
Adenocarcinoma
(small)

M15 46,0 −1,30 3,8 17 1 Non pathological
liver

M16 40,0 −1,14 14,8 85 2 Macrophags iron
and hepatocytes
Severe colostasis.

M24 40,0 −0,80 38,2 19 2 Passive congestion
M26 62,0 −1,06 22,8 54 2 Colostasios
M33 55,5 −1,32 2,4 33 1 Moderate esteatosis

IV. DISCUSSION

The iron concentration in a normal adult liver lies around
250 µg/g or 15 µmol Fe/g dry liver (the total amount of liver
iron storage will be around 400 mg) with a range of 50-500
µg/g of liver being considered normal [7].
A total iron content of more than 1 g in the liver is
considered as hepatic iron overload (> 700 µg/g or 40 µmol
Fe/g dry liver).  Table 1 and fig. 1 shows that the system
with the present method is capable of discriminate strong
and medium overload cases (M12-M13).
The expected theoretical Re(SCR), using equation 1, is
−1,11*10-6 for normal hepatic tissue. The estimated value
for normal liver taking into account the measurement of
water and the susceptibility for water and normal liver is
−1,22*10-6, which is close to the calculated value. There is
also a good agreement between measured and calculated
results for distilled water.
In very strong iron overload the liver can contain up to 14 g
(9 mg/g of liver tissue or 540 µmol Fe/g dry liver) [6]. Thus,
the expected Re(SCR) for a 50 cm3 sample with very strong
overload, using the theoretical model, will be in the range of
+6*10-6.  This value is much greater than the value
measured for the sample with a comparably strong iron
overload (M12). Further measurements and experiments are
required to reveal the reasons for this discrepancy.
With the designed system and protocol, the STD in the
Re(SCR) is in the order of  0.2*10-6. Measurement of M12
and M13 iron concentration indicate that our system is
capable of resolving samples with an overload double than
the pathological  limit (aprox. 100 µmol Fe/g dry liver).
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Fig. 2 Iron concentration of samples of hepatic tissue, measures for MI
and biochemical methods



With a modification of the mechanical structure it will be
possible to eliminate some of the errors that affect the
Re(SCR) [12] and to reduce the STD, allowing an increase
of the resolution.

In conclusion, the system is able to measure, with
reasonable precision, high iron concentrations in hepatic
tissue, presenting greater variability and inaccuracy in
samples with lower metal concentration. Absolute values for
iron concentration were underestimated when calculating
them from the measured Re(SCR) with the theoretical
model and considering published data of liver susceptibility.
Consequently an experimental calibration is required. The
method is promising for the non invasive measurement of
the hepatic iron in humans given the bigger volume of the
complete  liver when compared to our samples. The
mechanical aspects measurement and calibration techniques
have still to be adapted to the in-vivo new situation.
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